您好,欢迎来到皮书数据库!
热点推荐: 双循环
更多>> 课题组动态
更多>> 皮书作者
谢伏瞻
    中国社会科学院学部委员,学部主席团主席,研究员,博士生导师。历任中国社会科学院院长、党组书记,国务院发展中心副主... 详情>>
蔡 昉
    中国社会科学院国家高端智库首席专家,学部委员,学部主席团秘书长,研究员,博士生导师。先后毕业于中国人民大学、中国... 详情>>
李培林
    男,汉族,出生于1955年5月,山东济南人,博士,研究员,全国人民代表大会社会建设委员会副主任委员,中国社会科学... 详情>>

    分析21世纪工业大数据在我国西部葡萄酒产业中的应用

    摘要

    葡萄酒产业作为农业生产的代表性产业之一,主要包含葡萄种植和葡萄酒酿造两个主要环节。和其他的农业产业一样,其生产存在着周期长、过程数据难以采集、生物化学原理较复杂等因素。这些因素,给进行农产品种植和生产的科技人员进行生产分析和工艺调优带来了困难。为了解决这一困难,需要使用新的信息技术手段,进行过程数据集构造。而复杂数据的采集、传输和存储,对于网络的吞吐量、时延、抖动性和丢包率都提出了较高的要求。这样就需要新型的工业互联网络和连接平台为之服务。借助高质量外网,对葡萄种植和葡萄酒生产过程中的数据进行综合利用和实时监控,建立数据标识;并在此基础上完成数据的清洗和转换,构建数据仓库,设立机理模型和进行虚拟对比实验。本方法的小规模机理实验在线下完成,解除了用户对于生产工艺向外泄露的担忧,而海量平行对比数据可以大大减少生物化学实验的次数,并为科研人员选择研究方向提供指导性的意见。其核心优势在于,充分利用高质量外网和大数据,进行虚拟逻辑比对,从而完成了真实小规模无法复现的机理还原测试,同时核心工艺的落地实验在线下完成,解除了用户的后顾之忧。

    <<
    >>

    Abstract

    As one of the representative industries of agricultural production,the wine industry mainly includes two main parts:grape planting and wine making. featuring long production cycles,difficulty in collecting process data,and complicated biochemical principles. These factors have brought difficulties to those who engaged in the cultivation and production of agricultural products in the production analysis and process optimization. To solve this difficulty,it is necessary to use new information technology to construct the process data set. However,the collection,transmission and storage of complex data put forward higher requirements for network throughput,delay,jitter,and packet loss rate. This requires a new type of industrial interconnection network and connection platform to support it. With the help of high-quality external networks,comprehensive utilization,and real-time monitoring of data in the process of grape planting and wine production are carried out,and data identification is established;based on this,data cleaning and conversion are completed,data warehouses are built,mechanism models are set up and virtual comparison experiments are conducted. The small-scale mechanism experiment of this method is completed offline,which relieves the user’s concern about leakage of the production process. The massive parallel comparison data can greatly reduce the number of biochemical experiments and provide guiding opinions for the researcher to choose the research direction. The core advantage of the method is that it makes full use of high-quality external networks and big data to perform virtual logic comparisons,thereby completing the mechanism restoration test that cannot be reproduced on a small scale. At the same time,the core process landing experiment is completed offline,which relieves users from concerns.

    <<
    >>
    作者简介
    叶迎春:叶迎春,高级工程师,人社部一级人力资源管理师,中国工业互联网产业联盟“5G+工业确定性网络实验室”副主任,南京工业互联网产业联盟副理事长,江苏省委网信办首批网络安全专家组专家,中国联通移动互联网国际创业中心创业导师。
    祁学豪:祁学豪,网络通信与安全紫金山实验室系统架构师,主要负责全连接工业专网、工业智能数据采集分析相关课题及平台的架构设计及研发工作,负责SDN私有云平台、工业互联网平台及应用研发工作。
    张仁勇:张仁勇,工程师,人社部二级人力资源管理师,5G智造数字孪生创新中心、工业互联网联盟、5G产业发展联盟理事会员,中国联通大数据专家,安徽大数据协会会员。
    <<
    >>
    相关报告