您好,欢迎来到皮书数据库!
热点推荐: 双循环
更多>> 课题组动态
更多>> 皮书作者
谢伏瞻
    中国社会科学院学部委员,学部主席团主席,研究员,博士生导师。历任中国社会科学院院长、党组书记,国务院发展中心副主... 详情>>
蔡 昉
    中国社会科学院国家高端智库首席专家,学部委员,学部主席团秘书长,研究员,博士生导师。先后毕业于中国人民大学、中国... 详情>>
李培林
    男,汉族,出生于1955年5月,山东济南人,博士,研究员,全国人民代表大会社会建设委员会副主任委员,中国社会科学... 详情>>

    法律人工智能应用的技术障碍及其对策

    摘要

    类案推荐、量刑辅助、偏离预警是当前法律人工智能开发最为典型的应用模块。它们的功能实现遵循图谱构建、情节提取、类案识别、模型训练、量刑预测和偏离度测算的技术逻辑。尽管上述应用在实践中取得了一定的成效,但“弱人工智能时代”的大前提使得法律人工智能开发还普遍面临图谱构建过度依赖人工干预、情节提取的自然语义识别技术准确度不足、类案识别的准确率偏低、模型训练的样本瑕疵、量刑算法的不透明性、偏离度预警的颗粒度悖论等技术瓶颈。因此,在承认法律人工智能给传统司法工作带来突破的同时,也必须客观分析技术面临的障碍,着力推动法律人工智能领域专有技术的突破、提升法学院校在法律人工智能研发中的角色地位以及全程贯彻用户导向。

    <<
    >>

    Abstract

    The recommendation of similar cases,the assistance of sentencing,and the warning of illegitimate departure are the most typical application models of the current legal artificial intelligence. However,several technical obstacles,for instance,over-reliance on manual intervention in maps construction,the lack of accuracy of human semantic recognition,incorrectness of similar cases’ identification,imperfect data quality of the training,the opacity of sentencing algorithms,and the paradox of granularity in the warning of illegitimate departure,still need to be addressed. Therefore,it is necessary to objectively analyze technical obstacles,and to promote the breakthrough technologies in the field of legal artificial intelligence,enhancing the role of law faculty and user-oriented approach in the research and development process.

    <<
    >>
    作者简介
    王禄生:王禄生,法学博士,东南大学法学院研究员,东南大学人民法院司法大数据研究基地研究人员。
    <<
    >>
    相关报告