您好,欢迎来到皮书数据库!
热点推荐: 双循环
更多>> 课题组动态
更多>> 皮书作者
谢伏瞻
    中国社会科学院学部委员,学部主席团主席,研究员,博士生导师。历任中国社会科学院院长、党组书记,国务院发展中心副主... 详情>>
蔡 昉
    中国社会科学院国家高端智库首席专家,学部委员,学部主席团秘书长,研究员,博士生导师。先后毕业于中国人民大学、中国... 详情>>
李培林
    男,汉族,出生于1955年5月,山东济南人,博士,研究员,全国人民代表大会社会建设委员会副主任委员,中国社会科学... 详情>>

    面向我国政府管理的大数据管理成熟度模型及指标体系(2016~2020)

    摘要

    大数据的快速发展和广泛应用,既为社会发展带来了极大的便利,也深刻改变着政府的治理方式。政府作为社会变革的引领者,必须深刻认识到大数据管理工作的重要性,组建大数据管理专门机构,提供大数据管理保障措施,提升大数据管理效能。为使社会能更清晰地了解地市级及以上行政区域对大数据管理的现状和差异情况,我们将采用模型及指标体系方式,对政府在大数据管理方面的成熟度进行评估。构建面向政府管理的大数据管理成熟度模型及指标体系(BigDataManagementMaturityIndexforGovernment,DMMI),旨在通过可量化的指标来评价当前各级政府对大数据治理以及实践的绩效,同时通过指标引领来提升政府在大数据管理方面的治理水平,从而提高区域的竞争力和大数据服务水平。DMMI指标体系主要面向地市级及以上行政区域的评价,设有战略规划、配套政策、组织结构、数据开放、人才资源5个一级指标,12个二级指标和26个监测点,力求做到对地区大数据管理及服务水平进行模型化,根据大数据管理成熟度总分值,将不同地市级行政区域的大数据管理成熟度分为单体应用、集成应用和深度融合3个不同的阶段。

    <<
    >>

    Abstract

    The rapid development and wide application of big data not only brings great convenience to social development,but also profoundly changes the way of government governance. As the leader of social reforms,government should deeply understand the importance of big data management and establish special organizations to provide big data security to improve the efficiency of the management. In order to make the public further understand the current situations and differences of big data management of governments at prefecture-level or above,we will adopt the model and indicator systems to evaluate the maturity of big data management by governments. This paper puts forward the index system of Big Data Management Maturity Index for Government(DMMI),aiming to evaluate the performances and practices of governments at all levels on big data governance through quantifiable indicators. It also aims to improve the governments’ responsibilities of big data governance through indicator guidance as well as to enhance regional competitiveness and big data services. The index system of DMMI has five first-level indexes,including strategic planning,supporting policies,organizational structure,data opening,human resources,12 second-level indexes and 26 monitoring points. It mainly works for the evaluation of governments at prefecture-level or above. It strives to model the regional big data management and service levels. According to the total scores of big data management maturity,it classified the different regions at prefecture-level into three stages:single application,integrated application and deep integration.

    <<
    >>
    作者简介
    耿焕同:耿焕同,南京信息工程大学继续教育学院院长,教授,博士生导师,主要研究方向为人工智能、气象信息技术等。
    <<
    >>
    相关报告